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Stochastic Rearrangement Inequalities

by

Catherine D'Abadie and Frank Proschan

ABSTRACT

We develop a unified theory for obtaining stochastic rearrangement

inequalities. We present sample applications in ranking problems, hypothesis

testing, contamination models, optimal assembly of systems, and stochastic

versions of well known rearrangement inequalities. -
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1. Introduction and Summary. We obtain stochastic versions of rearrangement

inequalities. Rearrangement inequalities compare the value of a function of

vector arguments with the value of the same function after the components of

the vectors have been rearranged.

The classical example of a rearrangement inequality involving a function

of 2 vector arguments is the well-known inequality of Hardy, Littlewood, Pdlya

(HLP) (1952) for sums of products. For vectors A= (a,,... ,an) and J= (bl,...,b)

of positive numbers, HLP show that if ala ... >an and b, a... a bn (after relabeling,

say), for every permatation (r(1),...,r(n)) of (1,...,n), then

n n b(1.1) a. ab i 
>: a i b M a ib ni+ l

i=l il i=l ,-

hold.

What is a stochastic version of (1.1)? Under what conditions will ."

n St n st. n
(1.2) X i Yi a XXiYnYi+

iul il iul--

hold, given random vectors A, X? To answer this question, we need the following

definition:
t.

1.1 Definition. For vector x we write x a x' if i<j, x. <x. and x' is obtained1 J -

from x by interchanging x1 and x. and leaving the other components fixed.
J

1.2 Proposition. Let X and Y be nonnegative random vectors having joint density

" f(xy). Then inequality (1.2) holds for X and Y if for all pairs (i,j), li<jSn,

f satisfies:
t-i tij

(1.3) f(x,Z) + f(x',Z') - f(x',) f(x,Z') a 0, where x a x' and y a- y'.

Many well-known multivariate densities satisfy this condition, as we shall

see.

Since the work of HLP, many papers on rearrangement inequalities have appeared.

More recent are London (1970), Minc (1971), and Day (1972). The Marshall and . .

.. . .. . .. . .... .. . .. . . .. . . .. .:.. . .

............ *.... ........ .......
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01kin (MO) (1979) book presents a unified approach to the study of deterministic

rearrangement inequalities.

In this paper we develop a unified theory for obtaining stochastic versions

of rearrangement inequalities. (1.2) becomes a special case, as does the work --

of many earlier authors. Moreover, we obtain stochastic refinements of these

inequalities analogous to those obtained by MO in the deterministic case.

The value of having stochastic versions of rearrangement inequalities,

apart from purely mathematical interest, is manifested in their applicability

in a surprisingly large number of statistical and reliability contexts such

as, e.g., ranking problems, hypothesis testing, contamination models, and

*optimal assembly of systems.

In Section 2 we present some definitions and concepts. In Section 3 we

establish preservation properties for the functions of interest under various

statistical and mathematical operations. The theory of stochastically similarly

ordered random vectors, which provides a unified approach to stochastic rearrange-

ment inequalities, is developed in Section 4. In Section 4 we also show that

many well known multivariate densities govern stochastically similarly ordered

random vectors. In Section S we present some illustrative applications of the

- theory to ranking problems, hypothesis testing problems, and contamination

- models.

2. Preliminaries. In this section we introduce definitions and preliminary

-results used in subsequent sections.

Let Rn denote Euclidean n-space. We define a partial ordering of Rn Rn

which, as MD (1979) show, unifies the study of deterministic rearrangement

inequalities. To define this partial ordering we need some terminology and

notation.

-~~~~~~~~~~..,.....,. .,.,.. .......... ,....... .. . ....... ..... ..... ... .",............... .....
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Let Sn denote the group of all permutations of {l, 2, ... , n1. An element

of Sn is denoted by t- (w(l), ..., w(n)). We sometimes identify Sn with the

subset of Rn whose elements are those vectors with the integer components

1, 2, , n. Let w and ir be elements of S We say that w' is a simple

transposition of w if there exist positive integers 1 < i < j s n such that

ir(i) - 'r(j) = r'(i) = w(j) and ff(k) = '(k) for k = i, j. We write this as

tij t
i . For W, , 4 S n we say that w' is a transposition of F, written r aw ,

if i' = i or if w' can be obtained from i by a sequence of simple transpositions.

For a vector x eR, we define xv to be the vector (x ... x ). We
- ir~) ' i(n)

denote by x the vector obtained from x by arranging the components of x in
4. 4. -:.

increasing order. We say that x' is a transposition of x if x = xw and x' =x ,

t
where w2 > w'. We write x x. We note that this defines a partial ordering

of Rn. This partial ordering has been studied by Savage (1957), Lehmann (1966),

and Hollander, Proschan, and Sethuraman (HPS) (1977), among others.

Let (x,Z) e Rn x Rn. The orbit of (4,X is the set 0 (xir, X): w, cSn}

For a vector x e Rn the orbit of x is defined similarly.

2.1 Definition. Let ( , ) and Cxy') be two elements of Rn x Rn belonging to

the same orbit. We say that (x, ) is more similarly arranged than , if

* tthere exist w, a Sn such that x - x' = x and Z 2 a . We write "-

We refer to this partial ordering of Rn x le as the arrangement ordering.

We write (,') a ( ,y) if (x,y) ak (x',y) and (x,y) a (xy). From the definition

it is clear that once the arrangement ordering has been defined on the subset

{( ,Z : C S } of O it is completely determined for all of 0

Figure 2.1 illustrates the arrangement ordering when a (.5, 1, 3) and

= (2, 3.5, 4). An arrow in the diagram from an element (XX) to an element

(!,y' means that x a x



. . . . ... .,

L4

((.5, 1, 3), (2, 3.5, 4))

((.5, 1, 3), (3.2, 4)) ((.5, 1, 3) (2, 4, 3.5))

.3) ((.5, 1, 3) (4, 2, 3.5))
K; ((.5, 1, (3 C.5, 4, 2))

((.5, 1, 3), (4, 3.5, 2))

Figure 2.1. An Illustrative Arrangement Ordering.

2.2 Remark. Let (x,y) denote the largest element of its orbit in the arrangement

ordering, that is, (AX) >a (4XX for all w, 2 e Sn. Then it is easy to see

that (xi -x)(y i - y.) 0 for all pairs i, j. In this case we say that x and

y are similarly arranged. (HLP (1952) use the expression "similarly ordered".)
S

We write x =

We next consider the classes of functions introduced by HPS (1977) which

are order-preserving with respect to the transposition ordering and the arrange-

ment ordering.

2.3 Definition. (i) A function f from Rn into R is said to be decreasing in

t n
transposition (DT) if x a x' implies f(x) 2 f(x') for all x e Rn. (ii) A function

n n a
f from R x R into R is said to be arrangement increasing (AI) if ( 'Y) 2 (x'q)

implies f( ,y) Z f(x,") for all (;,y) e Rn x Rn.

Functions which are AI play an important role in the theory we develop.

Their properties and many useful applications were developed by HPS (1977). They

used the name "decreasing in transposition on RnxRn,,. The present name is due

to MO (1979).

The domain of an Al function is sometimes restricted to a subset A c xRn.

When this is done it is natural to require that A have the property that whenever

V..-
o........................

.,. . *"." . . . . . . .. •- .. " ." ." - . .. . .'....%%.*

-'~~~~~~~~~~~~~~~. . -'-"-- .. . ..""'. "" " "". . """""' ."" . . ." ." ." . .. . . . . . . . . . . .. . . ' ' ' ' '
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(x,y) c A, we have c £ A for all w, a e Sn" It is clear from Definition

2.3 that the AI property of functions is essentially a property of functions on

Sn x Sn . More precisely, f(A,y) is AI on A if and only if for each fixed pair
4--
(X,;) c A, f( ,'tO is AI as a function of w and g. In the same way the DT

property is a property of functions on S.

HPS (1977) give an alternative definition of an AI function. Proposition

2.4 below states that their definition is equivalent to Definition 2.3. The

definition of HPS is more useful in determining whether or not a given function

is AI.

2.4 Proposition. (MO, 1979). A function f from Rn xRn into R is Al if and only

if Ci) f(C,X) = f(;,v) for (ZX) Rn x Rn, we Sn and (ii) f( a f(Lzi,
t

where a t.

2.5 Remark. A function satisfying condition (i) of Proposition 2.4 is called

permutation invariant (PI). We also use this terminology to describe a function

nf defined on R satisfying f(xr) * f(x) for w e Sn . Condition (ii) is equivalent

to stating that for fixed ' the function f Q) f(XZ,) is DT.
x

HPS (1977) give many examples of AI functions including a number of well-

known densities in statistics.

3. Positive Set Functions in Arrangement, Arrangement Preserving Kernels, and

Their Preservation Properties. In this section we define two new classes of

functions and establish preservation properties of these functions under various

statistical and mathematical operations.

Subsection 3.1 Positive Set Functions in Arrangement and Arrangement Preserving

Kernels. Let f be a function of one or more vector arguments. Define the

difference operator 1 to be:x

•" 

.-.
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41
3 f (!l y~c 'X)

~-

where and differ by a simple transposition of the i and the j components.

We drop the superscript ij when it is understood.

3.1 Definition. A function f from Rn xjR into R is called a positive set function
tij tj

in arrangement (PSA) if x > " and X J for any pair i <j implies

a 1 A" ' f(x,y) > 0, that is, f (x,y) - x,y') fx,) + f(xy) 2 0. This is the

condition needed on the joint density of (X,Y) to obtain the stochastic version

of the HLP inequality.

3.2 Proposition. The function f is PSA and PI iff f is AI. The proof is

omitted because it is quite simple.

3.3 Definition. A function K from (Rn xRn) x (Rn xRn) into R is called an

arrangement preserving (AP) kernel if:

Ci) K(u, x; v, y) is PI in Cu, x) and in (v, y), and

(ii) for all u, v c n  K(A, A; 1, Z) is PSA in QS, y) . .

We show later in this section that under mild conditions on the measure m

the function f given by f(u,VX ffg(x,y)K(u,x; v,r)m(dx,dy) is AI whenever g

is AI and K is AP. This preservation property of AP kernels is very useful in

obtaining stochastic rearrangement inequalities for random vectors (X(u), Y(X))

which depend on parameters (u,)..

It is clear from the definitions that the properties of these two classes

of functions derive, as in the case of AI functions, from corresponding properties

of functions on Sn. We make this more precise in the next remark.

3.4 Remark. i) A function f(x,X) is PSA (AI) in , iff f(1Ta) is PSA (AI)

in Q,Z) for each fixed x and

S * ........
,'~~~~....'•.°.o .. ........ ° - ............... . o. , . .-. . .°•.....
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(ii) A function K(y,; is AP in (jx; . iff K(M,xwr; VT,W) is

AP in (0,ir; T,, for each fixed u, x, v and y.

In Theorem 3.5 below we give a method for constructing many examples of

*PSA functions and AP kernels using positive set functions. Recall that a positive

set function is a nonnegative function 0defined on a subset A xBoR2satisfying

*(x
9

y
1  

-*(xy2  -*(xy 1  +*(xy 2 ~0 for all x1  x2 in A and y y2 in B.

* 3.5 Theorem. Let * be a positive set function.

(i) if f1 and f2 are DT, then f(x,y) Off ( ):Jf(y)) is PSA.

(ii) If g, and 92 are AI, then K(j2,2; X ( 1(,X) 2(,))i AP.

IL The proof is omitted because it is simple.

We conclude this subsection with some useful preservation properties of

PSA functions and AP kernels. The proof of the next result is easy, and hence is

omitted.

3.6 Proposition. Let K(ua,x; v,y) be AP and let f(pv be constant on the orbits

*0 U for each pair u,v. Then H(u,x; v,) ;K(u3 x; X,~~u is AP.

HPS (1977) showed that if g and h are positive Al functions, then

f(!,X) Sg(x,y)h(3S,X) is an AI function. Proposition 3.7 below is similar to

this result.

*3.7 Proposition. Let g be an AI function and let h ?O be a PSA function. Then

:f(x,y) g(x,y)h(x,y) is a PSA function.

t.. ti..

Proof. Let x ax' andy z By definition,

1.4 f(!,Z) +f(x,,yi g(x,y hCZ,X) + g(x',yi)h(x,y')

ag(4,X)[h(!,y) + h(',X-)] (since g is PI3

a g(4,Xy)[h(x',y) +h(!,y')] [since g is AI and h is PSA)

af(xl,y) + f(x,y'). [since g is PI1.

Thus f is PSA.
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3.8 Corollary. (i) Let g, and g2 be DT and let h be AI. Then f(,Z) =

g1(X)h(I)g 2(Q) is PSA.

(ii) Let g, and g2 be PI on Rn and let h be PSA. Then f(x,Z) = gl(X)h(E,r)g2 C)

is PSA.

Proof. P~rt (i) follows from Proposition 3.7 and Proposition 3.5 (i). Part

(ii) follows from Proposition 3.7 and the fact that if g, and 92 are PI functions

on Rn, then g(x,.) .g 1 ,)g 2() is Al. II

Subsection 3.2 Preservation Properties of Positive Set Functions in Arrangement

and Arrangement Preserving Kernels. Next we present the main preservation

properties of PSA functions and AP kernels.

Let m denote a measure on the Borel a-field of Rn x Rn such that for all

permutations Z and all measurable subsets Ax B of Rn x Rn we have m(A x B)

* m{(x7r,X/): ,) AB}. We call such a measure permutation invariant. We also

call a measure m on the Borel a-field of RP permutation invariant if for all

measurable subsets A of Rn and all x e Sn, mCA) = m{xL: xe A}.

3.9 Theorem. Let g be PSA and let K be AP. Then assuming the integral exists

finitely, f(u,v) E ffgCx,y)KCu,x; v,Z)m(dq,dX) is PSA.

Proof. Let A a- J and A =A'. We have A A uv =ffg(xZ)AA Ku,x; v,y)m(4,dZ)

Partition Rn xRn into the four subsets {xx, ): xi x., yi< y}, {x,y):

xi >xi ,  y j} {(xs): x.S5x.j, yi'yj}, and {(x,y): xi>x., yi>y.}. Consider

the integral

(3.1) f f {g(,y)A A ,K(,x; X,r) + gCx',y)AuAvK(u,x-; X,~~~~x i x j , Yiyi j uv~ ~-

"ii!: + &C L,X')A A K(u,x; v,X') + g(E',y')&AvaK(Lu,x'; v,y')}m(d4,dX). :::'
X o X~ ~ .-

By the permutation invariance of K in the first and second pairs of arguments

we may rewrite the above expression as

............................

A..- . -....- ... -,. -- .°. , .. -. . : .- ..... .- .- -. :-*. -,..- -.-.. .- -.. - 'i ..-. . :-. ? ..- '..- . ' .'''':.,v .--
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(3.2) f f {g(xy)A A v K(u,x; v,y) - U vZ )
x. 5Xj, y y.

- g(,')A v,y) + g(x',yi)A.A K(ux; v,y)Im(dx,dX).

We notice that for x. = x. or Y. = Yi. the integrand is zero. Hence the

integral in (3.2) is equal to the integral in (3.1).

The integral in (3.2) is equal to

[AAgI')[ K~x X,Z)Jm(dx,dy).xi !5x i , Yi <5 y j 3S~

Since each expression in brackets is nonnegative by hypothesis, the integral

is nonnegative. Thus f is PSA. II

In Proposition 3.2 we proved that a PSA function which is permutation

invariant is AI. This result together with Theorem 3.9 yields a preservation

theorem for AI functions which we prove next.

3.10 Theorem. Let g be AI and let K be AP. Then assuming the integral exists

* finitely, f(u,v) B ffg(x,Z)K(u,x; v,Z)m(dx,dy) is AI.

Proof. By Theorem 3.9, K is PSA. Hence by Proposition 3.2 it suffices to

show that K is PI. Let w e S and let - be its inverse. Then

f(un,v~) ffg(Z,X)K(uir,x; vir ,y~ m((x, dX)

ffg(• 1 ,y )K(u,xw- ; v, )m(dx,dX)

= Jfg(x,y)K(u,x; v,y)m(dx,dy) f(u,v)

. by the permutation invariance properties of g and k and a change of variables. II

Theorem 3.10 is the main result of this section. It allows us to obtain

*.i stochastic versions of rearrangement inequalities.

Let X and Y be a pair of nonnegative random vectors with a joint density

which is PSA. For n e Sn let denote the vector (X (),... .,X (n)). We shall

see in the next section that the joint density of (X,Y ) is an AP function of

.. . . . . . . . .
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(Z,x; g,y). Let K in Theorem 3.10 be the joint density of X and Y. Then the

theorem states that if g is AI in (xy), then Eg(X,1) is AI in the indices of X

,*- and . Another way of stating this is to say that for all c Sn

St. "St"

s g(Xl,... ,X ; Y, Y
n n"'

n
Since g(x,y) = ) xiy i is AI, we see that Theorem 3.10 yields a stochastic

i=l

version of the inequality of HLP. We will show in Section 5 that we can obtain

stochastic versions of many other deterministic rearrangement inequalities for a

larger class of random vectors (,X) which contains those having PSA densities.

In that section we will also illustrate the usefulness of stochastic rearrangement

inequalities in statistical applications.

As a consequence of Theorem 3.9, we have proved a composition theorem for

AP kernels. This result, presentei in Theorem 3.11, is important in that it

- provides a method for generating new AP kernels from known ones.

3.11 Theorem. Let G and H be AP kernels. Then

K(MX; Xo - ffG(x; a , )HC,; Z,z)m(q,dy) is AP.

The proof is straightforward and hence is omitted.

We next present another important preservation result which enlarges each of -

the classes of functions we are studying. It states that each of the classes of

." AI functions, PSA functions, and AP kernels is closed under mixtures.

3.12 Theorem. Let (9,F,u) be a measure space and let Fe(x) be measurable as a

. function of 8 e e for each A. Define Fs fFe u(de). Then it follows that (i) if

Fe is AI for each 0, then F is AI; (ii) if F8 is PSA for each e, then F is PSA;

(iii) if F8 is AP for each 0, then F is AP.

The proof of this result is straightforward and is omitted. Part (i) of

Theorem 3.12 is due to HPS (1977).

W'** " -" "

e • , * • • • • .o. o • *.. - . .. .° .• . -. %~ \ , . . .
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HPS (1977) prove as their main result a preservation theorem for AI functions.

We show in Theorem 3.13 below that this preservation theorem is a special case of

Theorem 3.10. Thus the theory we have developed extends the theory of AI functions

developed by HPS (1977).

3.i3 Theorem. (HPS,1977). Let g and h be AI functions. Then

f(u,) = fg(u~x)h(x,v)m(dx) is AI.

The proof is straightforward and is omitted.

In Theorem 3.14 below we present a generalization of the preservation theorem

of HPS (1977) for AI functions presented in Theorem 3.13.

3.14 Theorem. Let g be PSA, h be AI, and m be PI. Then

fC,)= gx, h(E, y) m(d) is PSA.

Proof. Let a Ai j and a = A 3 . By definition,

a a f(x,y) = A g(x,z)h~z,y)m~dz)x y 2 f 4 (zymd)

f(EgCx,z)- g(x-,z)]hC,) * [g(x', -gx,E )]h,)}m(d).

By partitioning R into the sets {z: z. !z} and (z: z. >Z}, we may write

the above expression as

" f Cg(xA g(Z',Z.) ][hC ,X) hQ ,Z-) I g(2S,z') - g1'E' [hCz',,X) - hCj',y') ImCdo
z. <z. -
1 3Z

= f [ g(x,l) + g(x',z') - g(Z', ) - g(xz")]Eh(;,) - h(z,Z')]m(dE)• ~~zi5 < z -.--

by the permutation invariance of h. The last integral is nonnegative since each

expression in brackets is nonnegative by hypothesis.

Thus f is PSA. I

.. -... .
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HPS (1977) applied their preservation theorem to ranking problems in non-

parametric statistics. In Section 4 we show how to obtain some of their results

under slightly more general assumptions. In addition, we obtain new results

applicable to other ranking problems.

Theorem 3.16 below and its corollaries will be useful in these applications

to ranking problems. In it we show how to obtain new PSA and AI functions by

composing these functions with certain transformations on Rn. By a transformation

we mean a mapping from Rn into Rn of the form t(x) a (t1(X),...,tn(x)), where

t is a function on Rn. We write -x for the vector (-x

n

3.15 Definition. Let t be a transformation from le into RP. Then t is called a

rank-like (reverse rank-like) transformation if it satisfies:

(i) = ) for all E Sn, and

(ii) t(F) and x(-x) are similarly arranged.

One example of a rank-like transformation (which motivates the name

"rank-like") is the rank order transformation, important in nonparametric statistics.

The rank order transformation is the transformation r(Q) - (rl() ,...,rn ),

where ri( c) is the rank of xi among xl,...,Xn; in the case of tied x's, average
1n

ranks are used. The vector r(x) is called the rank order of x. Another example

is the transformation f(,) a (f(xl),... ,f(xn)), where f is an increasing function.

If f is decreasing then f(A) is a reverse rank-like transformation.

We now obtain some results concerning rank-like transformations.

3.16 Theorem. Let f be a PSA (AI) function. Let t and s be either both rank-like

or both reverse rank-like transformations on Rn. Then ?(x'y) B f(t(x s(y))

is PSA(AI).

* * . ***~S~.~S ,. .... .
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t. t]
Proof. Assume that f is PSA. Let X t x-and y 2 X'. We have

"(x,Y) + f(C'•,) = f(t(x), SWz)) + f~tx", £CZ')

f(t(x),s(y)) + f(t (x), s'(y)) 2 [by (i) of Definition 3.15-
*..<-

f(t(x)• I(Q)) + f(t(x), 'Q)) = [by (ii) of Definition 3.15)

fcc(-), £c(X)) f(tc(), scy-)) = Rcx-,y) + (x•i.

Thus, f is PSA.

Now assume that f is Al. By Proposition 3.2 f is PSA. Hence, by what we

have shown above, f is PSA. To show that f is AI it remains to show, by Proposi-

tion 3.2, that £ is PI . Let w e Sn . Then for all x, X e Rn we have
n

*cx,) ftcx), as(c ) = fct(,)!, (D) = f(tx), IQZ)) = fy.

* Thus ? is A. I.

Using the examples of ranklike transformations mentioned previously. we can

obtain results concerning rank orders and increasing (decreasing) transformations.

3.17 Corollary. Let f be a PSA(AI) function. (i) If r(x) and s(Q) are the rank

order transformations of A and X, then fQ(Z), s(y)) is PSACAI). (ii) If g and h are

* either both increasing or both decreasing functions, then f(g(x), h(y))

f((g(xl), g(x2), ... , g(xn)), (h(yl), hCY2 ), ... , h(yn))) is PSACAI).

Since the transformation t(A) - Z is clearly rank-like, we obtain immediately:

- 3.18 Corollary. Let t be a rank-like transformation and let f(4,X) be PSACAI).

Then f(,t(y)) is PSACAI).

Another useful corollary of Theorem 3.16 is:

3.19 Corollary. Let t and s be either both rank-like or both reverse rank-like

and let K(u,x; v,y) be AP. Then K(u,t( x); ( is AP.

,-,,~~~~~~~~~~~~~~~......,...... . . ..-...-....-.... ,..-........ ................................. .- -...-.... ,
.. .. . . . . . . . . - .* , . * *,.*. . . ..
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4. Stochastically Similarly Arranged Pairs of Random Vectors. In the first sub-

section of this section we introduce the notion of stochastically similarly arranged

" pairs of random vectors.

We prove that if (XY) are stochastically similarly arranged (SSA) then

f(LY) s. f( Y for all AI functions f, where (X ,Y ) is the random vector

(Xw(l)) X'(n); Ya(1 )D..Ya(n)). We show that if (X,Y) have a joint density

which is PSAorAP then (X) are stochastically similarly arranged. In the case -i

where X and X depend on parameters p and j,, we define the slightly more general

notion of (X,X) being stochastically arranged (SA) like ( We prove results

analogous to the above for these pairs of random vectors.

In Subsection 4.2 we show that many multivariate densities of interest in

statistical practice govern pairs of random vectors which are SSA or SA like

parameters (%,P by showing that they belong to the class of PSA functions or

AP kernels.

We show in Subsection 4.3 that under certain statistical operations on pairs

of SSA random vectors, the property of being SSA is preserved. (As an example,

we show that this property is preserved under mixtures.) -

We conclude the section with some generalizations of the work of HPS (1977).

" Subsection 4.1 A Stochastic Arrangement Ordering for Pairs of Random Vectors.

- We begin this section with the definition of a new notion of stochastic comparison

between pairs of random vectors. This notion leads to a stochastic version of the

arrangement ordering for pairs of n-tuples presented in Definition 2.1

4.1 Definition. Let (X,X) and (W,Z) be pairs of random vectors. We say that

"Q1 X) are stochastically more similarly arranged than (W,;) if, for each AI

function f we have Ef(A,X) z Ef(4, or, equivalently, f(Q,[ s, f(,. We

st-a.
write this as QX) (1)
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We frequently consider pairs of random vectors (X( ),Y(B)) (X (O,

X n) ; Y 1 ,S.. ,Yn(Bn)) with associated vector parameters p and . As noted

above, we write (X ,Y) for (X Xn); Y( 1) ...,Yo ). In this case we-.. ..-a(n)

can think of the indices w and a as being the parameters of the random vectors

X and Y . In Theorem 4.2 below we impose a condition on the joint distribution --ae a t

of and Y so that a ? ( implies that (A(Z),). )) t. (X(a),Y( )).

Thus the arrangement ordering of the parameters is reflected in a stochastic

arrangement ordering of the random vectors.

We use the notation I for the vector of order statistics (X(I) ,...,Xcn)).

4.2 Theorem. Let (2(),X()) be a pair of random vectors with parameters a and

. Let

(4.1) PQ(2 ) = j, x c = 4(a) = Vv C )

be a version of the conditional probability which is an AP function of , ,

a st a.
for each fixed pair ( Then (,A) a ( implies (X(2),y(Q)) ,

Proof. The result is a direct consequence of Theorem 3.10. II

In the special case where we interpret the indices of A and Y as parameters,

we have the following corollary of Theorem 4.2.

4.3 Corollary. For a pair of random vectors (X,Y), let

(4.2) 4Q . ,Y

be a version of the conditional probability which is a PSA function of (t,£) for

each fixed pair (x,). Then (p,,) a (pr.) implies (X,Y ) sta (X,y ).

Theorem 4.2 and Corollary 4.3 motivate the next two definitions.

4.4 Definition. We say that (X(a), Y(O)) are stochastically arranged like (QB1

(SA like (a,g)) if the random vectors (X(C),Y(A)) are such that a version of the

conditional probability in (4.1) is AP.

• . . o o . .. . . . . - o.. % o..** *% . * . . . . . . . .~ ** • • *• .- .-
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We will sometimes drop the parameters %,Aand write (Xo) for CXCi),Y(8)).

If F is a c.d.f. governing a pair of random vectors which are SA like Ca,8) we say

that F is SA like (m,."

4.5 Definition. We say that (XY) are stochastically similarly arranged (SSA) if

tne random vectors (X,y) are such that a version of the conditional probability in

(4.2) is PSA.

We say that the c.d.f. governing a pair of SSA random vectors is SSA. It

can be shown that if the pair of random vectors (A,) is degenerate at (X, , then

are SSA iff A and are similarly arranged. Hence the notion of SSA random

vectors is a stochastic generalization of the deterministic notion of similarly

arranged pairs of vectors.

4.6 Remark. Note that if (X(,), Y(J)) are SA like ( then for (?, ) fixed,

(X(Z), Xw()) are SSA. Conversely, if (X,Y) are SSA, then (X ,Y ) are SA like (pT).

In Section S we use Theorem 4.2 and Corollary 4.3 to obtain numerous stochastic

rearrangement inequalities for pairs of random vectors which are SA like ((I,$) or

SSA. We show that these inequalities contain as special cases their deterministic

counterparts.

In the next theorem we present a sufficient condition for a pair of random

vectors (X,Y) to be SSA.

4.7 Theorem. Let (X,Y) have a PSA density with respect to a permutation invariant

measure. Then (X,Y) are SSA.

The proof is straightforward and is omitted.

Similarly, we have a sufficient condition for ( ( ), ()) to be SA like

S(, which we state next.

4.8 Theorem. Let (X() ,Y()) have an AP density with respect to a permutation

...- invariant measure. Then (X(a),Y(8)) are SA like (,..).

The proof is straightforward and hence is omitted.
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In the next theorem we give a sufficient condition for the distribution

function of a pair of random vectors to be PSA.

4.9 Theorem. Let f(E,X) be a PSA density and let F(;,X) be its corresponding

distribution function. Then F(x,y) is PSA.

Proof. Write

F(x, f :ut) I (Coy) (vi)f(u,)m(Cu ).
il C'x i) i=l -

n n
Since each product of indicator functions is AI, i I Cu) x H I c ( v.)

(ox. (o,Yi)

is AP by Theorem 3.5 (ii). Since f is PSA, F is PSA by Theorem 3.9.

An analogous result holds when C has an AP density.

4.10 Theorem. Let f(ux; XX) be an AP density and let F(u,x; v,X) be its corre-

sponding distribution function. Then F(M,,; XX) is AP.

The proof of Theorem 4.10 follows from Theorem 3.11 in a manner similar to

that of Theorem 4.9, and hence, is omitted.

The results in this subsection allow us to obtain stochastic rearrangement -

inequalities for a large class of random vectors which contains those pairs ( ,V

having PSA or AP densities. Many examples of such densities are given in the next

subsection.

Subsection 4.2 Densities Governing Random Vectors Stochastically Arranged like

Parameters The purpose of this subsection is to show that many multivariate

densities of interest in statistical practice govern pairs of random vectors which

are SA like , In the next subsection we show how operations of statistical

interest on pairs of random vectors which are SA like (aA) preserve this property.

Hence, from the basic examples given in this subsection, many other examples can

be constructed.

In Theorem 4.11 below we show how to construct pairs of random vectors which

are SA like (2,J) from independent random vectors with AI densities. Since a large

number of well-known densities are Al, this result provides many examples of pairs

of random vectors which are SA like C ,§). By Remark 4.6, corresponding to each one

of these examples we can obtain an example of a pair of random vectors which are SSA.

-... ~....



4.11 Theorem. Let X and be independent random vectors in Rn xR n each having

an AI density. Then the joint density of (X is AP.

Proof. The result follows immediately from Theorem 3.5 (ii) with

¢(x,y) u xy. -.

The following examples of Al densities can be used to construct AP densities.

(See HPS, 1977 for proofs).
x.n u.Xi".

4.12a Multinomial: gl(u, ) - NI H - where
i=1 xi.

n n
0<u <l, x.i=0,1,2,...,i-l,...,n, u l, and Ixi=N.

1 imi i-

4.12b Negative multinomial: g2(j, } a

r jN +
n x

N n n . --I-

1 + ui - i 1I °  -
r(N) i11•_

• " where u.i>0, xi=0,1,.... i,... n, and N>0. -..

4.12c Multivariate hypergeometric: g3(H, .

nLx ,where ui>0, x =0,1,...,

n n

i -1 i = 1

4.12d Dirichlet: g4 (MZ) =

r 8+ u -1 n u* . i=1 ' 1=- xl j '''--l.

n ii"r e) I r(u.)

n
where u. >0, x z 0, i-1, .. •, n, I x i1, and e> 0.

% o . .... . . . ..... .. . . . ... . •.•. •" .•°•° . .
•

°•°...... . . . .
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4.12e Inverted Dirichlet: = ...,

r e + I. uI n Jiu.:

r(e) n r(u.) I+ I x-

where u.>0, xi>0, il, n.., an, ad 0>0.

4.12f Negative multivariate hypergeometric:

pn

N i i n rx i + ui )
S6 OA .;) •n r ui

where u. >0, x u0,1...5 N' I.xN,.andN-1,2.
iul -~

jiI

4.12g Dirichlet compoumd negative multinomial: 174,A:

n n
r s , xi r 8. ui r(N +e

,. n r(xi + ui)

x.Ir(N)l e)r N. 7 uj ....
i~l *  il jul...

0 where u>0, xi-0,1,..., il,...,nl, 6>0, and Nol,2,...

4.12h Multivariate logarithmic series distribution: g8 04, )

n "1 iXin x.i I J1+ n n i

log 1 +

where u>0, xi=O,..., i l,...,n.

....................................................-.--- ,.-.
: i'~~~~~~~~~~~~~~~~~~~~.... .......... ..................... ,.... ..........,. ......-......... . . ....... :...:...:.. . .......... :::... :.

C a ", . . . - - . o- - . .* , - . . " .• .. . . ...
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4.12i M4ultivariate F distribution: g9 (JpV -

r(u) n (u1 n u .
r l0 (2 ju 1x

2 n r(x.(X +. I i

where u~ 0, i a0,1l......n, Us I Xyxi a0, i 0,1,... n.

* 4. 12i Multivariate Pareto distribution:

(u) a~a. +)... Ca~n- 1) flu. I iXx

where x.> uu> 0, iu,.,,and a> 0.

4.12k Multivariate normal distribution with coinon variance and cosn

* ~covariance: g 1 ~~

jv'2i ~I ~where is the positive definite covariance -

matrix with elements o2 along the main diagonal and elements 002 elsewhere,

In Theorem 4.13 below we give another method for constructing AP densities

from Al densities on Rn X Rn.

4.13 Theorem. Let u, X, . and z2 be elements of R~and let and

A (X,;S2).Let f, and f2 be AI on R n x Rn and let g satisfy g(3!,Z) =~,;q

* for all v, g£Sn xSn Then K(W,~ f(1 Z; 2 ~

is AP in u,2

Proof. By Theorem 3.S (ii), f(M,)(3,)isA. Tecnlio flow

from Proposition 3.6. I
Theorem 4.13 applies to all of the densities listed above except 4.12 i, j

and k.

Using Theorem 4.14 below we can construct additional examples of Al densities.

RecallI that a nonnegative function f (x,y) defined on a subset A B of R 1is
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totally positive of order 2 (TP21 if f(xly 1 ) x f(x 2 ,Y 2 ) f(xly )f(x2 ,yl) for

all x1 <x2  in A and yl < Y2 in B. HPS (1977) have established the following

relationship between TP2 functions and AI functions.
n

4.14 Theorem. (i) Let f(x,y) be TP2. Then g(x~y)- 11 f(x.,y.) is AI.

(ii) Let f(x,y) be a positive set function function. Then g(,y) = f(x
i= 1

is AI.

Thus we may construct AP densities by taking one (or both) of the functions

g i = 1, 2, in Theorem 4.11 to be the product of TP densities. This corresponds

to the case where the components of one or both of the vectors (,X) are mutually

independent.

Examples of PSA and AP densities can be generated using densities which are

Pdlya frequency functions of order 2 (PF 2 ). A nonnegative function f(x) is PF 2

if log f(x) is concave on (--,-). Equivalently, a nonnegative function is PF 2 if

f(x-e) is TP2 for x, 6 real. Hence the shifted coumkterpart of a PF 2 density is TP2 .*

In Remark 4.15 below we see how a result of Karlin (1968) can be used to

construct examples of pairs of random variables (X,Y) having TP2 densities.

4.15 Remark. Often in reliability situations we are interested in components

whose lifelengths have TP2 densities f(8,x)- for example, Poisson or exponential,

where 8 is a random variable which depends on the environment. Let X and Y be the

lifelengths of two independent components with TP 2 densities F(e,x) and g(8,y),

respectively. Let 8 have distribution 1(9). Then the joint distribution of (X,Y)

is given by K(x,y) -ff(e,x)g(e,y)dv(e). By the composition theorem for TP

functions (see Karlin, 1968, p.16), k(x,y) is TP2 in x and y.

4.16 Theorem. Let (Xi,Yll,...,(XnYn) be independent, each having a common TP2

density in (x,y). Then ( ,V-((Xl,...,Xn), (Y,...,n) are SSA.

Proof. By Theorem 4.14, (AX) has a joint density which is AI and hence, PSA.

By Theorem 4.7, (,Y) are SSA.I.

.........
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Examples of PSA and AP densities can also be constructed from Schur

functions.

Recall that a vector A Rn is said to majorize a vector X Rn if

k k n n ':

x~k k Y[. for k=l,...,n- 1 and . x = where xi>x[2 .  n
irnI wh i=i P1x,.:"-

A function f is said to be Schur-concave (-convex) if f(A) < (a) f(y) whenever A

majorizes y. The following theorem yields examples of AI functions constructed

from Schur functions.

4.17 Theorem. (HPS, 1977) (i) Let f(x,Z) -h(x-y). Then f is AI if and only if

h is Schur-concave.

(ii) Let f(Z,)- h(xtX). Then f is AI if and only if h is Schur-convex.

Thus, for Theorem 4.11, we can use Schur-concave densities to construct

examples of PSA and AP densities.

In the next subsection we will study models in which observations of certain

SSA random vectors (X,X) are subject to contamination (measurement errors). We - ,

will show that if the measurement errors W and Z, say, have Schur-concave densities

then (4+1, X+) is SSA under some independence assumptions.

40 (1974) give a number of interesting examples of Schur-concave densities.

Joint densities of the form f(&) = g(xAx) where g is a decreasing function and

A is a positive definite matrix with X = .= X and ij = A for i * j are called

elliptically contoured densities. MD show that elliptically contoured densities

* are Schur-concave.

Another useful example of a Schur-concave density due to MO is:

Let X1, ...' X n be independent with PF2 density f. Then the joint density
n

of A, f.= iT f(Xi) is Schur-concave.
X %~

Subsection 4.3 Operations On Random Vectors Which are Stochastically Arranged

Like Parameters (osO). In thts subsection we show that certain operations on pairs

of random vectors which are SA like (gg preserve the SA property. First we show

- that if (AJ) are SA like (i, ), then so are (r,Q),p(X)), where r and s are

"&*.-....-..."._,'..'-_....-....,..'. .' """'' '""".... '" <  " " ""' """ ::-

"...-... -'- .'.' ., ... .'.- '''' -- J ''. 2 . *%,' - *'.'..- .•- "- % ' -.
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*rank-like functions. In particular we establish this result for the rank order

of random vectors which are SA like (a,$). Next we show that the SA property

is preserved under certain contamination models and give examples. We also point

out that many of the results of Section 3 can be used to perform operations on

random vectors which are SA like (%,M which preserve the SA property.

In Theorem 4.18 below we show that if the random vectors (X(2),X(A)) are SA

like (j,) and r(x) and t(y) are rank-like transformations, then the transformed

random vectors (r(X(2)), s(X(,))) are SA like ( ,V*

4.18 Theorem. Let (X(g), Y(A)) be SA like , Let r and s be either both rank-

like or both reverse rank-like transformations. Then (R() ,S(V)

s.(Y( ) are SA like (q,§.

To prove Theorem 4.18 we need a lemma.

4.19 Lemma. Let (X( ), C)) be SA like (%,A) and let ((),(

Ss(Y( )), where r and s are either both rank-like or both reverse rank-like

transformations. Then

(4.3) P(( = .,S(k ZgE=, (.) '

is AP in (,u; Qv for each fixed pair ,

Proof. Let r(x) and s(X) be rank-like transformations of x and y. For

6 Sn we have:

PCECx r p 1,E ) = v, (- = , ( . VA)

Now the function I is clearly AI in (t,;). Hence by Theorem 3.5 (ii),

I I=X is AP in , ) By Corollary 3.17, 1 I is AP

in (u,r(x ; X,s(Z)). By Remark 3.4, I I is AP in (j, ; .

Since (X,Y) is SA like ( ,§), it follows from Theorem 3.11 that (4.3) is AP

".in (,...; X )"

.* . . . . -. . .
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The proof for the case where r and s are both reverse rank-like is

similar. II

Proof of 4.18 Theorem. We have:

By Lemma 4.19, the integrand is AP. Hence by Theorem 3.12 (iii),

P( - )A V) X( 2 -- () M , J(A) j) is AP in ( ,

since it is a mixture of AP functions. l

The techniques used to prove Theorem 4.18 and Lemma 4.19 yield analogous

results for random vectors which are SSA. In Theorem 4.20 we state the counter-

part of Theorem 4.18 for SSA random vectors.

4.20 Theorem. Let (A,X)be SSA and let and be either both rank-like or both

reverse rank-like transformations. Then S ( (X), (fl) are SSA.

For random variables Xi,...,Xn, denote by Ri the rank of Xi among Xl,...,Xn

The random vector R = (R1,... ,Rn) is called the rank order of (X1,... ,Xn) Theorems

4.18 and 4.20 have the following important corollary

".' 4.21 Corollary. Let CX) be SSA (SA like (Q,§)). Let B be the rank order of .

-." and let S be the rank order of Y. Then the random vectors (R,S) are SSA (SA like

Next we prove a result which is useful in the study of contamination

(measurement error) models. In this type of model we are interested in a random

vector A but are able to observe only a vector A. E, where W is a vector repre-

senting measurement error.

.* 4.22 Theorem. Let (Q,Y) have a density which is PSA (AP with parameters ( ,( ).

Let , be mutually independent and independent of (,X), each having a Schur-

concave density. Then (AV, X+;) is SSA (SA like ( ).

..

...,,**.* * .. ."*.:% % ... 7. *P



- 25 -

Proof. We prove the theorem in the case where (X,)) has a PSA density g.

Denote the densities of and Z by hW and h, respectively. Then the density

of CX +, ) is:

Since hwand hz are Schur-concave, by Theorem 4.17(i), hwCg-,) and hz(;,-y)

are AI functions. The conclusion follows from Theorems 3.9 and 4.7.

In the case where g is an AP density, the result follows in a similar way

from Theorem 3.11 and Theorem 4.8. I-

In a contamination model of the type mentioned in the comments preceeding

Theorem 4.22, it is often assumed that the measurement error is exchangeable

multivariate normal with mean zero or multinomial with equal cell probabilities, A

or, possibly a vector of independent random variables with common Poisson distri-

bution. In Corollary 4.24 below and may have any of these distributions or

any of the ones given in Example 4.19 of D'Abadie (1981). -

To prove Corollary 4.24 we need the following counterpart of Theorem 3.12 for

distributions which are SSA (SA like (

4.23 Theorem. Let (ef,y) be a measure space and for each O8 e let F(,X) be SSA

(SA like ( Assume that for each x•y F8 (x,) is measurable as a function of

8. Then F(4,7)= fFe(Z,Z)u(de) is SSA (SA like (,8)).

4.24 Corollary. Let (X,j) have a density which is PSA CAP with parameters (

Let WQ) have any of the densities in Examples 4.19a through 4.19g of D'Abadie (1981)

or let W1 ,. *in (ZI" .. ,Zn) be independent Poisson random variables with common

intensity parameter X. Then (A+W, Y+Z) is SSA (SA like ( ,Q)).

Proof. Since the multinomial and the multivariate normal random vectors in

the hypothesis of the theorem have Schur-concave densities the conclusion follows

in the first case directly from Theorem 4.22. In the second case, where one or

both of Wl,...,W n and ZlI...0Zn are independent Poisson random variables, the

result follows from the first case, Theorem 4.23, and the fact that independent

Poisson random variables with common intensity parameter when conditioned on their

sum become multinomial with equal cell probabilities. II

:/ , ,.:,,-.. ,-.: :,, .... .-.. ,,. .,,,...., .. .,. .. . . , .. .. ... ... ..-. ., ..... .. . ........ .... ... .... ..-.. , .... . ....... : ., ... ,,.,.. ..
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4.27 Remark. As noted at the end of Subsection 4.5, the product of the same

* PF2 densities is Schur-concave. Hence in Theorem 4.22 one (or both) of the con-

* taminating random vectors can be a vector of independent PF2 variables.

In general, many results in Section 3 can be used to construct random vectors

which are SSA or SA like (Q,k). Theorem 4.23 for mixtures illustrates this. As

another example, Theorem 3.15 has the following counterpart for distributions

*which are SSA (SA like (q,A)) representing a slight generalization of Theorem 4.22.

4.26 Theorem. Let QX) have density f with respect to a permutation invariant

measure m given by f((,0, g ,h where gl and g2 are

AI and h is PSA. Then (Q,X) are SSA.

4.27 Remark. Theorem 4.26 has a reliability interpretation. Suppose that g, and

g2 are densities of component lifelengths. We may think of the parameters % and

as random vectors which depend on the environment. We formalize the notion that

Sand Jare dependent by supposing that the joint density of a and is PSA. Then

by the theorem we have that (AX are SSA.

The next result gives another sufficient condition for the distribution

function of a pair of random vectors to be PSA. Recall that (X,Y) is right corner

set increasing (RCSI) if P[X > x, Y > yJX > x; Y > y'3 is increasing in x' and y'

for each fixed x and y. Barlow has shown that this is equivalent to F(x,y) being

TP2 . Consequently, the following theorem is true.

4.28 Theorem. Let (X1 Y),...,(Xn,Yn) be RCSI. Then the joint survival function
n'n

of I and X, P = 11 P (x.,y.), is PSA.
i= 1 1

* Subsection 4.4 A Generalization of a Theorem of HPS. We conclude this section

with some genealizations of the work of HPS in the spirit of the previous sub-

sections of this section.

HPS(1977) consider a random vector X(a) indexed by a parameter which has

the property that its density f(p.) with respect to a permutation invariant
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measure is an AI function. They give many examples of random vectors of interest

in statistics having the above property, and show a number of interesting results

in nonparametric statistics for this type of random vector. Actually, most of the

" results in their paper concerning this type of random vector (cf. Theorems 4.1,

- 4.4, and their corollaries) are true under the weaker hypothesis that

(4.4) P Q III! = I) is AI in a and w for all x.

(That the latter condition is weaker than the requirement that the density

f(,,A) be AI follows from the fact that P ( = (jaf =) '( , we r

the density f exists.)

We will say that the random vector A() is arrangement increasing (Al) whenever

(4.4) is satisfied. We prove the following theorem which yields as a corollary a

generalization of Theorem 4.1 of HPS given below in Corollary 4.32 and a useful

result concerning AI random vectors.

* 4.29 Theorem. Let X(Z) be AI and let R(S) 5r(X(i), where r is a rank-like

function. Then ( ) is Al.

Proof. By Remark 3.4 and Theorem 3.13,

KUM MOW ;S) - rCT = I-N " is AI in a and u.

Now

f (it) P(Ma =ufIR(a) -U) (Z) =uI 'X) P x(' - d.xR () U).

By the above the integrand is Al. Since f (X) is a mixture of AI functions,

the conclusion follows from Theorem 3.13. II

The corollary below is easily seen to be an immediate consequence of Theorem

4.29.

" 4.30 Corollary. Let X(9) be AI and let R(q) be the rank order of X(A.• Then

C ) is Al.

HPS proved this result in the case where Z(p) has a density f(a,) which

is Al.
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S. Applications to Statistics of Random Vectors Stochastically Arranged Like

Parameters (2j). The theory developed in Sections 3 and 4 has applications in

a number of areas in statistics. In this section we present sample applications.

Subsection 5.1 Stochastic Rearrangement Inequalities. Using our theory we obtain

stochastic rearrangement inequalities involving the rearrangement of components of

random vectors. We show that these inequalities contain well-known deterministic

rearrangement inequalities as special cases.

The first inequality we obtain is a stochastic version of the rearrangement

inequality of HLP.

5.1 Theorem. Let (X,y) be SSA. Then for all permutations w,

n S.n s.n

i!iXiYi Il XiY (l i=l XiYn-i l

Proof. The result follows from Theorem 4.2 and the fact that the function

f(x,y) - xy is AI.II

Theorem 5.1 applies to a large number of pairs of random vectors (X). As

an illustration let X- (Xl,X 21,...,Xn) and Y (Y1,Y2,...,Yn) be independently

distributed exponential, Poisson, or normal (variance 1) with parameters

a l . :2 an and 0 1 <  O.n . Then (X) has an AP density by

Theorem 4.14 and hence the stochastic inequalities in (5.1) hold for (X,Y). Of

course, the inequalities in (5.1) are true for any of the pairs of random vectors

( ,X) given in Section 4 which have PSA or AP densities.

We give an example of how Theorem S.1 may be applied in reliability theory.

. This generalizes a result of Derman, Lieberman, and Ross (1972) in the case where

• "two vectors are involved.

. 5.2 Example. Suppose that we have two stockpiles of n units each, of two different

* types of components. From these stockpiles we are to construct n systems, each

composed of a component of type 1 and a component of type 2 arranged in series.
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A component i of type j has a random reliability P. 1, 2, i= 1, .. , n. We

1 1 1~ 2 2 2assume that P 1 (Pl,... pl ) and E2_ (P,.P are independent, having Al

densities with parameters a1 < ... < an and ... < n respectively. Then,

as we have seen in Section 4, (1 p) are SA like , For the assembly which

.th .thpairs the i component of type 1 with the w(i) component of type 2, the average

reliability of n systems is 1 n 1 2 " Thus inequality (5.1) states that
n i w(i)

the optimal assembly, in terms of average reliability of the n systems, is achieved

~th .thwhen the i component of type 1 is paired with the i component of type 2.j

Inequalities for functions of min (x,y) have been obtained by Jurkat and

Ryser (1966). They show that for nonnegative n-tuples x and ,

n n n
U min(xiY i) a 11 min(x i,yf(i) z n min(x iy 1,+ 1)

for all e £ Sn, and

n n nmin(xiY i )  m . in(xi,w(i) min(xnil)

i=l i=l i

Minc (1971) obtained the following similar rearrangement inequalities for

* -products and sums of max (x,y):

n n n
IImax(xy.) n Umax(xiy )) i max(xiyn.

ial inlii

and

n n nmax(xi,Yi) S max(xiYff(i) ) S max(x iyn-i~l).....

isl i=l i=l 1

By arguments similar to those of Theorem 5.1 we can obtain stochastic versions of

each of these inequalities:

5.3 Theorem. Let (,Y) be SSA. Then the following stochastic inequalities hold

for all permutations w:
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n St. n St. n
(5.2) U min(Xi,Yi) > g min(Xi,Y Gi) a g min(XiYn-i+l) ;

i=l jil il

St n St n
(S.3) R min(XiY i ) a imin(XY (i)) a min(X i,nA i)d

i=l i- ijl 1'-'1 .

n St. n St. n
jul 1(XiY w(i)) "j..-l-(S.4) n max(XiYi) 5 n ma (X EFi) 1 max(XiYn-i I) ; .:

i--I iml ji

n St. n St. n1($5 .max(Xi,Y i)  max(XiY 7F(i)) mx(X iYn-i~l).
i-l i=1lri j-l 1

Minc (1971) has shown that if x and y are nonnegative real n-tuples then

n n n".
il (xi +y i) < U (x i  < . (x i  Yn i+l) .

ju ii u

for all permutations i e Sn .
n-

Since *(x,y) = TI(Cx. .y) is an AI fumction, from Theorem 4.2 we obtain the

following stochastic version of the above inequalities.

5.4 Theorem. Let ( .X be SSA. Then

n St. n St. n-
TI (X i Yi) I (X +Y W(i) Ii (Xi +Yn.i~l

)

jl1l

for all permutations w.

London (1970) generalized the results of HLP and Jurkat and Ryser to obtain

rearrangement inequalities for sums and products of functions having some convex

. properties.

Let x>O and yZO. Define f (xy) Ef (I + /x) where f (ez) is convex for z Z0

" and f(1) ! f(z) for z 2 1. Define g(x,y) s g(/x) where g(z) is convex for z 0 and

g(0) Sg(z) for z2:0. London has shown that 1 and g are positive set functions.

Applying Theorem 4.2 we can obtain stochastic rearrangement inequalities for sums

involving functions of the form f and g.

. . . . o

. . . . . . . . . . . . . .. . . ..** °o *****.** .- ,". . ' ""," .' = '-"- - o -
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5.5 Theorem. Let (X,Y) be SSA. Let f and g satisfy the conditions stated above.

Then n Y n Ysi) st. n Yn.il/T"Cix i, X :s f(l+
f~l i) s I f(l ) S fX.)

jul iul i=l

andn
n Y t. n Y St. n Yn-i+
gju 1 g) !/x)._::::;i.

As an example of a function statisfying the conditions on f, take f(z) = log(z l).

The function g(z) E z satisfies the conditions on g. Another example is the function

g(z) = z log(z.l).

There are many other examples of deterministic rearrangement inequalities

involving AI functions in the literature. Using our theory we can obtain stochastic

versions of all of these inequalities in a unified way.

5.6 Remark. We note that the stochastic rearrangement inequalities we obtain

contain as special cases their deterministic counterparts. Let x and be vectors

of nonnegative numbers. LetA : S.} and B ( : I E Sn}. Let (A5X)

be degenerate at (,k). Then (X,X has a PSA density with respect to the counting

measure on AxB, and, clearly, Corollary 4.3 yields for any AI function f,

f(,) z f( ,j) 2 f(',' the deterministic rearrangment inequality.

Subsection 5.2 Applications to Tests of Hypothesis. Let (XY) be SSA like parameters

( ,A. Let ao be a fixed vector Qf Rn in the orbit of p. In this subsection we

have developed to study the problem of testing the hypothesis

(5.6) HO:Az a° against Ha:j i s

Let f be an Al function and define the test Tf by

(5.7) Tf(xY) -1 if fCAX) < Vaj y if f(A,) - v j -0 otherwise.
f,

* S S . . . . . . . .* .-. ... ..
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The null hypothesis is rejected with probability Tf(X,X) if (Zy is observed.

Note that in general the numbers v and y(O <y <1) are determined to give size

a to the test.

Let BT f(, be the power function of the above test against alternatives
f

, that is, BT(a ) ETf(X(Q),Y(A). We shall need the following definition

(see Barlow et al., 1972, Chapter 6).

5.7 Definition. Let c Rn x Rn be given. A test T has isotonic power

against alternative (2, ( (with respect to the ordering ,,,) if for any

(2,,l) and (22 .A2 ) in Rn x Rn such that < (21, 1) c o we have

(9,21h) 2  < (al(,ltl) .090 ehv

BTf (2'2 Tf(a2A)

5.8 Remark. It is a consequence of Definition 5.7 that any test T which is

isotonic with respect to the "t" ordering is unbiased for testing

(5.8) Ho: (aoo,) a (%0 ,B0 ) against Ha: (as) < (a0 ,. 0 ), (ci 0o) (oV

Note that by Remark 2.2, the hypotheses in (5.8) are equivalent to those

in (5.6).

It follows from Theorem 3.10, that tests of the form given in (5.7) are

isotonic with respect to the arrangement ordering and, consequently, by Remark

5.8 such that tests will be unbiased for testing H0  against H . We state this

formally in the theorem that follows.

5.9 Theorem. Let (s,)) be SSA like ( Consider testing the hypothesis

Ho: ( against Ha: .o' < 3 (2o4)

Let f be an Al function and let Tf be the test given in (5.7). Then the test Tf

has isotonic power against alternatives (go,O) S (ao 0, 0). Consequently, a test

S•.
based on Tf is unbiased for testing Ho: o " against Ha: o0

A number of well-known statistics are Al functions and hence can be used to

test the hypotheses in (5.6).
-I:

S****. %*.*.****.* *.* . . .. *. . . . ..*
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5.10 Example. The following statistics are AI functions:

1. Product moment correlation: Pearson's product moment correlation

coefficient is given by
(x x (y' -

X x.)2  -.2

( I.(xi 3

~ iJ"i.J -)

2. Spearman's k: Spearman's p is given by

(ri rj) (si - sj)

( (ri - rj) 2

where ri is the rank of xi and si is the rank of yi. Spearman's p can be viewed

as the sample correlation coefficient computed for the ranks.

3. Kendall's T: Kendall's correlation coefficient T is given by

nul n 1, if (a-b) a 0
"T c (xj,x lE(yi,y'j) where gCa,b)=

i=l jui+l -, if (a-b) < 0

4. A general correlation coefficient of Daniels: Daniels (1948) offers

the following quantity as a general measure of correlation where x and may be

either the observations or their ranks:

6--.3
!a~xi'jIX)b(yi'y)) ""

[ 2(xiJ " 2 b(yi'YJ y) ' iJ *j[[[[-1

where a(x.,x.)= -a(x,x), b(yi.,y j ) - -b(yj.,y i ) and a(xi,xj), b(yi,y j ) are non-

decreasing with increasing rank separation.

S. The quadrant test: Lex AX be either the observations or their ranks. .

Let eddenote the median of x ... xn Cy, ... , yn). The quadrant
Amd(m d no thmeino l n 1n

statistic is the sum

n
U * [ a(x )b(yi), where

iu 1-" "
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O, if xi X
SEed

(5.9) a(xi) -
1, if x i > med

and b(yi) is similarly defined.

6. Blonquist's quadrant test for positive association: Blomquist proposed

the following test for positive association:

n
8 [ 1 a(xi)bl(yi) + a2(xi)b 2 (yi)]i--1

where aI and b are defined in (5.9), a2 = 1-a1 , and b= 1-bI.

7. Scores tests of Bhuchongkul: Bhuchongkul (1964) proposed a class of rank

tests based on statistics of the form

n
a = A(r.)B(s.)

i=l1 1

where A and B are nondecreasing fuictions.

The proofs are omitted.

From the fact that the product moment correlation is Al, it follows that a

test of Ho against H a based on r is equivalent to a test of Ho against Ha based
n

on the statistic which is also AI. It also follows that a test based on

n
p is equivalent to a test based on I rs.

Daniels (1948) correlation coefficient includes as special cases, r, p and T

by appropriate choices of a and b.

The statistic o in (7) above reduces to Spearman's p by taking A(i) - B(i) m i.

This test also includes the normal scores test of Fisher-Yates by A(r )(B(si)) to

be the r -th (s -th) standard normal order statistic.

5.11 Example. Some further examples of statistics which are AI functions are

given below. They are due to Savage (19S7)-.

. . . . ... . . . . . . .
.* *' P . -- .*]
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n

2. T2(k, .. n; rI . r.., rn) II Cr + r

3. T 3(1p ... , n; Ti), rd) I= ~ rt )
ij=l

where d(ab) 1 if a <b, 0 if a a b

2n
4. T4(l, ... , n; rI , ... , r) I d(n, r )

n~l

n
5. T5 (E, ... , En; r, ... , I n ) i I E r),

6. T6(Il, ... , n; r, r n) I B is, i  1, n.

n r

Next we give some sample applications of Theorem 5.9 to contingency table

analysis.

5.12 Application. Suppose that we ask a group of people selected at random to

indicate their preference for one among k different objects. If the group consists

of males (Group 1) and females (Group 2), say, we may be interested in whether or

not these two groups have similarly arranged preferences. Conditioning on n, the

total number of persons in the group, the numbers of preferences (cell frequencies)

nill n12  , nlk, 2 1 , n2 2  n2k [ i jl n may be interpreted as an

observation from a multinomial distribution K(I, 11 ; , with probabilitiesE-2-P'2

Pill P12 1 ...I P3ikX P21 l P22 -I
p ij = IJ Suppose that the

preferences of one of the groups, Group 1, say, are known, that is, the vector

(Pill Plk ) is a known, fixed vector. We are interested in testing the hypothesis

IV.

-- --
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HO: (Pll' P12' ''' PkS (P21' P22' " ' 2k

against

Ha: (P 11 1 P 12 -'' Plk) (P21 P22 * " ". P2k "

As we have seen in Theorem 5.2, K(Eln 1 ; 2 ,n2) is AP, where p= (plP 1 2,.

P2 =(P21,P22,"'P2k , !1= (nll,nl2 ...,nlk), and 2= (n21,n22 ,...n 2k). Thus by

5.9 a test of Ho against H is unbiased if the test statistic is an AI function.0 a k
For example, the test which rejects n nlinn 2i cc for an appropriate c is unbiased

for testing H0 against H
a a "

5.13 Application. A similar result follows if we condition jointly on nl, the total

number of males, and on n2, the total number of females (the fixed row totals case

in contingency tables.) It is straightforward to show that K(21, 1 ; 22) =

M(El5nl)M(E2,n2), the product of two multinomial densities. As we have seen in

Theorem 4.12, K is AP. Hence, in this case, we also have that a test of H0 against

H based on an Al test statistic is unbiased.
a

*
o
-. 5.14 Remark. In Theorem 4.18 we showed that if (A,X) are SA like (c,§) then their

* rank order (B,SJ is SA like (C,A). Thus Theorem 5.9 also holds for test statistics

- T based on the rank order of (XY). A useful application of the above remark arisesf
in testing for the existence of positive dependence between two time series. An

example is described below.

5.15 Application. Studies of air pollution have shown that automobile exhaust is

the major source of lead elemental air pollution in many urban areas. It is believed

that automobile exhaust is also the major source of bromine pollution in the atmo-

sphere. For a particular city, we wish to determine whether automobile exhaust is

the predominant source of both of these two pollutants or, alternatively, whether

other sources are responsible for bromine pollution. Suppose that AV. the concen-

tration of lead at time i, i- 1, ... , n, is known. Let = n
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To help in distinguishing between the two alternative hypotheses, we test

Ho: _0 _ against H a: X s , where Bi is the true concentration of bromine at

time i, i= 1, .... n, and 8= (O1...,sn). Rejection of H would indicate that

• sources other than automobile exhaust contribute to the bromine pollution.

Observations L on lead and B on bromine are assumed to be governed by a joint

AP density with parameters (Xo,A). By Theorem 5.9, we conclude that a test using

an AI test statistic based on the ranks of L and B is isotonic and is, consequently,

unbiased against H a. Nonparametric tests for this type of co-movement between

time series have been proposed by Moore and Wallis (1943) and Goodman and Grunfeld

(1961).

5.16 Remark. Suppose that the measurement I and I are subject to errors 4 and X

with X MVN(0, E(p)) and Y ". MVN(0, Z(P 2)), where

i :.p02 a2J

. for 0 5 p ! 1. Since the density of both X and Y is Schur-concave by Corollary 4.24,

(L+X, B+ X is SA like (Q,§ and, as before, a test using an AI test statistic

* based on the ranks of L+A and B+Y is isotonic.

A similar result may be obtained for the examples given above involving

contingency tables. In this case we suppose that the observations N, and N2, say,

* are subject to errors X and Y each having a Poisson distribution. By Corollary

- 4.24 N, + and Y2 X have AP densities.

"...... .
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